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Abstract. This paper tackles unknown signal detection in a distributed
fashion via a Wireless Sensor Network (WSN) made of tiny and low-cost
sensor devices. The sensors are assumed to measure an unknown deter-
ministic parameter within unimodal and symmetric noise. Since usual
Internet of Things (IoT) scenarios require energy-constrained operations,
one-bit quantization of the raw measurement is locally performed at each
sensor. A Fusion Center (FC) receives noisy quantized sensor observa-
tions through reporting parallel-access Rayleigh channels and makes a
global decision. We propose the Rao test as a simpler alternative to the
Generalized Likelihood Ratio Test (GLRT) for multisensor fusion. The
intent of our work is performing fusion directly from the received signals,
following a decode-and-fuse approach. Then, we study the design of the
(channel-aware) quantizer of each sensor with the intent of maximizing
the asymptotic detection probability. Finally, we compare the perfor-
mance of the Rao test with that of the GLRT by simulations (related to
a practical WSN scenario).

Keywords: Distributed detection · GLRT · Information fusion · IoT ·
Rao test · Threshold design · Wireless Sensor Networks

1 Introduction

The deployment of billions of tiny devices with sensing, computation, and com-
municating functionalities is envisaged by the Internet of Things (IoT) paradigm.
IoT paradigm is expected to be used in numerous peculiar areas of everyday
life [1]. These vertical applications include smart cities and farming, e-health,
cyber-surveillance and security [2], digital industry. The pervasive presence of
such devices allows to (a) sense the whole environment, (b) interact with it and
(c) use the Internet to provide the basis for information transfer, data analytics,
and applications usage [3].

The federation of such wireless sensing nodes into Wireless Sensor Networks
(WSNs) constitutes the stepping stone of IoT capitalization toward situation
awareness by means of collective data analytics. For this reason, WSNs have
been steadily attracting interest by the research community. Their main advan-
tages consist of their flexibility and affordable costs [4,5]. Distributed detection
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constitutes a main important task, among the different collective inference tasks
which can be accomplished by WSNs, which has been deeply investigated in the
last years [6].

Unfortunately, full-precision transmission of measurements by sensors is pre-
cluded due to harsh bandwidth and energy constraints in WSNs. As a conse-
quence, only one bit is usually communicated to the Fusion Center (FC) by each
node, concerning the inferred hypothesis. In this context the optimal test at each
sensor consists of quantizing the local likelihood-ratio test (LRT) into one-bit.
This result holds under both Bayesian and Neyman-Pearson frameworks. Still,
the complexity in the design of the quantizer thresholds grows exponentially
with the WSN size [7,8]. Equally important, the evaluation of sensor LRT is
precluded by the incomplete knowledge of all parameters concurring to define
the sensing model [8]. Hence, the bit transmitted is either obtained as raw mea-
surement quantization [9,10] or corresponds to the inferred binary-valued event.
In the latter case, the bit is usually obtained via a sub-optimal detection statistic
[11]. In both situations, FC receives sensors bits sent over the wireless medium
and combines them via a wisely-designed fusion rule, with the intent of overcom-
ing the detection limitations of the single sensor. The optimum strategy to fuse
the sensors’ noisy bits at the FC, under conditional independence assumption,
is a sum of sensor-individual log-likelihood terms, each depending on unknown
sensing parameters, as well as the communication channel parameters [12].

Some simple approaches have been thus proposed which neglect the depen-
dence with respect to the unknown sensing parameters [12–14]. Still, the para-
metric specification of a sensing model (via some unknown parameters) allows
the FC to define a composite test of hypotheses. In this case, the General-
ized LRT (GLRT) is usually considered as the most common design solution
[15]. Indeed, WSN literature has extensively addressed distributed detection of
quantized data via the GLRT [9,16,17]. Specific applications include revealing
a cooperative target with unknown location, an uncooperative target modelled
by known observation coefficients, or an unknown source at unknown position.

Conversely, the Rao test [15] does not require maximum likelihood esti-
mates under the alternative hypothesis (H1). Hence, it represents a simpler
detection method for tackling composite hypothesis testing, while asymptoti-
cally yielding the same performance as the GLRT. Accordingly, several works
have appeared leveraging Rao test in WSN-based detection in recent years. For
example, Ciuonzo et al. [18] have proposed a Rao fusion rule based on one-bit
quantization of scalar measurements, whereas a corresponding generalization to
multi-bit case has been devised in [19]. Recently, its simplicity has been exploited
to detect an uncooperative target (e.g. with also unknown location) at the FC,
by developing a generalized version of the test for the one-bit [10] and multi-
bit cases [20]. The uncooperative-target case has been recently analyzed also in
an online setup with a sequential version of the above fusion (one-bit) rule [21].
Furthermore, [22] has applied the Rao test to collision-aware reporting for fusion
design. Still, none of the above works have directly attempted to design fusion
rules directly from the received signals at the FC.
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To fill this gap, we focus on distributed detection of an unknown signal buried
in zero-mean sensing noise (with symmetric and unimodal pdf), via channel-aware
techniques. In detail, we study the problem of decision fusion over parallel-access
fading channels. In the aforementioned scenario, to cope with the computational
complexity of the GLRT, we propose the Rao test as a simpler alternative not
requiring any estimation procedure and we obtain its explicit form.

The reporting channel is herein taken explicitly into account and the fusion
rule is designed directly from the received signals, following a decode-and-fuse
rationale [14], as opposed to previous literature (e.g. [18]). Then, the (weak-
signal) asymptotic performance of both GLR and Rao tests is obtained and
the optimal choice of the quantizer threshold (in the channel-aware context)
is investigated according to the resulting objective. Remarkably the quantizer
design can be decoupled among sensors and, while the objective explicitly consid-
ers the fading channel condition between each sensor and the FC, the optimized
thresholds seem to be independent on the above term. Furthermore, the Rao
test is compared to the GLRT through simulations. Results highlight that our
proposal performs at least as well as the GLRT for a finite number of sensors,
in addition to sharing the same asymptotic distribution.

Paper Organization: Section 2 details the system model; Sect. 3 develops
GLR and Rao tests in the channel-aware setup; then, in Sect. 4, we design
asymptotically-optimal quantizers; in Sect. 5 we report numerical results and
discuss them; finally, in Sect. 6 we summarize take-home messages and point to
future directions of research.

Summary of Math Notations: Vectors are represented with lower-case bold
letters , with an being the nth entry of a; E{·}, (·)T , (·)∗ and � (·) are the
expectation, transpose, conjugate and real part operators, respectively; the unit
(Heaviside) step function is denoted with u(·); P (·) denotes a probability mass
function (pmf), whereas p(·) a probability density functions (pdf); we denote
a real-valued (resp. complex-valued) Gaussian pdf having mean μ and variance
σ2 with N (μ, σ2) (resp. NC(μ, σ2)); pN (·) (resp.Q(·)) denotes the pdf (resp. the
complement of the cumulative distribution function) of the standard normal ran-
dom variable N (0, 1); last, the symbol ∼ (resp. a∼) corresponds to “distributed
as” (resp. to “asymptotically distributed as”).

2 System Model

We consider a collection of sensors k ∈ K � {1, . . . , K} collaborating to test
an unknown deterministic parameter θ ∈ R, i.e. to perform a composite binary
hypothesis testing. In summary, the problem is formulated as follows:{

H0 : zk = wk,

H1 : zk = gk θ + nk, k ∈ K;
(1)

where zk ∈ R denotes the kth sensor measurement, gk ∈ R is a known observation
coefficient and nk ∈ R denotes the noise random variable (RV) with E{nk} = 0
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and unimodal symmetric pdf1, denoted with pnk
(·). Furthermore, the RVs nk

are assumed mutually independent. It is worth noticing that Eq. (1) determines
a two-sided test [15], where {H0,H1} corresponds to {θ = θ0, θ �= θ0} (in our
case θ0 = 0).

Then, the kth sensor quantizes zk within one bit of information, i.e. dk �
u (zk − τk), k ∈ K, where τk represents the quantizer threshold (to be designed).
This operation is performed in realistic IoT scenarios to meet stringent band-
width and energy budgets. Due to the distributed nature and design limita-
tions of WSNs, the bits encoding the quantized information are usually directly
transmitted from local sensors to the FC through parallel channels that undergo
independent fading. Each decision dk is then mapped into a BPSK modulation,
corresponding to a symbol xk ∈ X = {−1,+1}. Without loss of generality, we
assume that dk = H0 maps into xk = −1, whereas dk = H1 is encoded into
xk = +1.

In practice, sensor communication ranges are usually small and the data
rates are relatively low. Transmission links can be assumed experiencing flat
fading. Herein, we adopt the Rayleigh fading channel model as a consequence of
a homogeneous scattering environment. In other terms:

yk = hk xk + wk k ∈ K; (2)

where yk ∈ C, hk ∈ C
N , wk ∼ NC(0, σ2

w,k) are the received signal, the fading
channel, and the (channel) noise term, respectively. For notational compactness,
the received signals from different sensors are collected as y �

[
y1 · · · yK

]T .
The objective of our study consists of the derivation of a simple statistical

test (from the perspective of computational complexity) having the following
form

Λ(y)
Ĥ=H1

≷
Ĥ=H0

γfc (3)

i.e. deciding for H0 (resp. H1) when the statistic Λ(y) is below (resp. above) the
threshold γfc, and the design of the quantizer (i.e. an optimized τk, k ∈ K) for
each sensor. In the previous definition, Λ denotes the generic decision statistic
implemented at the FC.

Accordingly, FC system performance will be measured in terms of the detec-
tion (PD � Pr{Λ > γfc|H1}) and false alarm (PF � Pr{Λ > γfc|H0}) probabili-
ties, respectively.

3 Fusion Rules

A common tool for a detector in composite hypothesis testing problems is given
by the GLRT [15], which for the model under investigation is expressed in
implicit form as:
1 Such class of pdfs includes the well-known Gaussian, Laplace, generalized Gaussian

and Cauchy distributions with zero mean [15].
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ΛG � 2 · ln

[
p(y; θ̂1)
p(y; θ0)

]
; (4)

where p(y; θ) represents the likelihood as a function of θ. Furthermore, the term
θ̂1 denotes the maximum likelihood (ML) estimate under H1, defined as:

θ̂1 � arg max
θ

p(y; θ) (5)

The observation of Eq. (4) highlights that ΛG requires the solution to an opti-
mization problem. Accordingly, this increases the computational complexity of
its implementation (e.g.. by grid search or local-optimization methods).

Due to the above technical difficulties, in this work we propose the adoption
of the Rao test as a simpler solution. Its corresponding decision statistic, for the
scalar case (θ ∈ R), is given in the implicit form as:

ΛR �

(
∂ ln p(y ;θ)

∂θ

∣∣∣
θ=θ0

)2

I(θ0)
(6)

where I(θ0) is the Fisher information (FI), i.e. I(θ) � E{
(

∂ ln[p(y ;θ)]
∂θ

)2

} evaluated
at θ0. The motivation of our choice is given by the extreme simplicity of the test
implementation (since θ̂1 is not required, cf. Eq. (6)), but with the same weak-
signal asymptotic performance as the GLRT, as supported from the theory [15].

In order to obtain ΛR explicitly, we expand ln [p(y; θ)] as:

ln [p(y; θ)] =
K∑

k=1

ln [p(yk; θ)]

=
K∑

k=1

ln
[NC(yk;hk, σ2

w,k)αk(θ) + NC(yk;−hk, σ2
w,k)(1 − αk(θ))

]
(7)

where αk(θ) � Fnk
(τk − gkθ), with Fnk

(·) denoting the complementary cumula-
tive distribution function of nk.

The closed-form expression of ΛR is drawn by means of the explicit forms of
the score function (i.e. ∂ ln[p(y ; θ) /∂θ]) and the FI (i.e. I(θ)), both evaluated at
θ = θ0. In the former case, the final expression of the score function at θ = θ0 is
given by:

∂ log p(y; θ)

∂θ

∣
∣
∣
∣
θ=θ0

=
K∑

k=1

gk pnk (τk)

⎡

⎣

exp
(

4�(h∗
kyk)/σ2

w,k

)

− 1

exp
(

4�(h∗
kyk)/σ2

w,k

)

Fnk (τk) + (1 − Fnk (τk))

⎤

⎦ (8)
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In the latter case, I(θ0) is given in closed form as:

I(θ0) =
K∑

k=1

g
2
k p

2
nk

(τk)

{
Fnk

(τk)

∫ +∞

−∞

(
exp(2 ξk) − 1

exp(2 ξk)Fnk
(τk) +

(
1 − Fnk

(τk)
)

)2

N (ξk;Ξk, Ξk) dξk

+ (1 − Fnk
(τk))

∫ +∞

−∞

(
exp(2 ξk) − 1

exp(2 ξk)Fnk
(τk) +

(
1 − Fnk

(τk)
)

)2

N (ξk;−Ξk, Ξk) dξk

}

(9)

where we have employed the definition Ξk � 2 |hk|2 /σ2
w,k. Both derivations are

not reported for the sake of brevity. Combining Eqs. (8) and (9) we obtain ΛR

in closed form, as shown in Eq. (10):

ΛR =

(∑K
k=1 gk pnk

(τk)
[

exp(4�(h∗
kyk)/σ2

w,k)−1

exp(4�(h∗
kyk)/σ2

w,k)Fnk
(τk)+(1−Fnk

(τk))

])
I(θ0)

2

(10)

It is apparent that ΛR (as well as ΛG) depends on τk’s. Hence the threshold set,
gathered within τ �

[
τ1 · · · τK

]T , can be designed to optimize performance. The
aim of Sect. 4 will be then the derivation of a corresponding objective required
to accomplish this task.

4 Asymptotically-Optimal Quantizer Design

Previous literature has shown that ΛR (as well as ΛG) is asymptotically dis-
tributed as follows [15]:

ΛR
a∼

{
χ2
1 under H0

χ
′2
1 (λQ) under H1

(11)

where the non-centrality parameter λQ is given by

λQ � (θ1 − θ0)2I(θ0) , (12)

in which θ1 = θ denotes the true value under H1. The above asymptotic result
holds when the signal is weak, namely |θ1 − θ0| = c/

√
K for a suitably-defined

constant c > 0 [15]. Clearly a larger λQ leads to improved performance of both
GLR and Rao tests. Also, as shown in [9], I(θ0) is a function of τk, k ∈ K. Thus,
we choose τ1, . . . τK in order to maximize λQ, which is equivalent to the following
optimization:

arg max
{τ1,...,τK}

I(θ0, τ ) . (13)
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The optimization of the FI I(θ0, τ ) with respect to {τ1, . . . , τK} can be decoupled
in this particular case. Indeed, by separating the optimization variables τK ’s, we
obtain K independent threshold design problems, formulated as follows:

argmax
τk

{

p
2
nk

(τk)

{

Fnk
(τk)

∫ +∞

−∞

(

exp(2 ξk) − 1

exp(2 ξk)Fnk
(τk) +

(
1 − Fnk

(τk)
)

)2

N (ξk;Ξk, Ξk) dξk

}

(14)

(1 − Fnk
(τk))

∫ +∞

−∞

(

exp(2 ξk) − 1

exp(2 ξk)Fnk
(τk) +

(
1 − Fnk

(τk)
)

)2

N (ξk;−Ξk, Ξk) dξk

}

In the case of ideal reporting channels, it is known that many unimodal and
symmetric pnk

(·) with E{nk} = 0 lead to τ∗
k � arg maxτk

gk(τk) = 0 [23,24].
These include the Gaussian, Laplace, Cauchy and the widely used generalized
normal distribution (with the further constraint 0 ≤ ε ≤ 2). For the mentioned
reasons, and due to the particular symmetry of BPSK modulation employed in
the non-ideal channel case considered, we choose τ∗

k = 0 in what follows.
Accordingly, we obtain the following expression for Rao test with optimized

thresholds (referred to as Λ∗
R) by setting τ∗

k = 0, k ∈ K, in Eq. (10):

Λ∗
R =

[

∑K
k=1 gk pnk (0)

exp
(
4�(h∗

kyk)/σ2
w,k

)
−1

exp
(
4�(h∗

k
yk)/σ2

w,k

)
+1

]2

∑K
k=1 g2k p2nk

(0)
∫ +∞

−∞
(

exp(2 ξk)−1
exp(2 ξk)+1

)2 [
1
2
N (ξk;Ξk, Ξk) +

1
2
N (ξk;−Ξk, Ξk)

]
dξk

(15)
which is extremely simpler than the GLRT, as it avoids to solve an optimization
problem (which depends on pnk

(·)).
Additionally, the non-centrality parameter corresponding to the above

threshold choice (denoted with λ∗
Q), is given by:

λ∗
Q = 4θ21

K∑
k=1

g2k p2nk
(0) (16)

×
{∫ +∞

−∞

(
exp(2 ξk) − 1
exp(2 ξk) + 1

)2 [
1
2
N (ξk;Ξk, Ξk) +

1
2
N (ξk;−Ξk, Ξk)

]
dξk

}

Comparison with Previous Literature: Recall that in the binary-symmetric
channel case, the corresponding threshold-optimized non-centrality equals [9]
λ∗

Q � 4 θ21 · ∑K
k=1

[
g2k p2nk

(0)
]

(1 − 2Pe,k)2, while in the ideal case it reduces to
λ∗

Q � 4 θ21 · ∑K
k=1

[
g2k p2nk

(0)
]
. Hence, the effect due to fading channels is entirely

represented via the term within the curly brackets of Eq. (16).

5 Results and Discussion

In what follows, we consider a WSN with K = 10 sensors and compare the
Rao test to the GLRT. For simplicity, we consider Gaussian-distributed sensing
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Fig. 1. PD0 vs. PF0 for GLR and Rao tests; WSN with K = 10 sensors, gk = 1, and
sensor thresholds set as τ�

k = 0. The channel SNR is SNRchan
k = 5 dB, while three

different cases of sensing SNR are considered, namely SNRobs
k ∈ {0, 5, 10} dB.

noise, i.e. nk ∼ N (0, σ2
n,k) and gk = 1. We set the sensor thresholds to τ�

k = 0.
We define the kth sensor observation signal-to-noise ratio (SNR) as SNRobs

k �(
g2kθ2/E{n2

k})
. Conversely, we define the corresponding reporting channel SNR

as SNRchan
k �

(
E{|hk|2}/σ2

w,k

)
. For simplicity, the numerical results refer to

a homogeneous scenario, namely we assume the sensors experience the same
sensing and channel SNRs, namely SNRobs

k = SNRobs and SNRchan
k = SNRobs,

for k ∈ K. The figures are generated by running 105 Monte Carlo trials.
First, in Fig. 1 we compare the GLR and Rao tests in the case of a fixed

channel SNRchan
k = 5dB, while three different cases of sensing SNR are consid-

ered, namely SNRobs
k ∈ {0, 5, 10}dB. The two tests are compared in terms of

their Receiver Operating Characteristics (ROCs), i.e. PD0 vs. PF0 . Such anal-
ysis is performed to appreciate the effect of the unknown signal power on the
capabilities of the two channel-aware fusion rules. Results highlight comparable
performance among the two fusion rules, with a slight gain achieved by the Rao
test. Interestingly, when moving from SNRobs

k = 5dB to SNRobs
k = 10dB, perfor-

mance do not improve appreciably for both the rules. This saturating effect can
be attributed to the fact that fusion performance are limited by the uncertainty
given by the communication channel.
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Fig. 2. PD0 vs. PF0 for GLR and Rao tests; WSN with K = 10 sensors, gk = 1,
and sensor thresholds set as τ�

k = 0. The sensing SNR is SNRobs
k = 5 dB, while three

different cases of channel SNR are considered, namely SNRchan
k ∈ {0, 5, 10} dB.

Differently, in Fig. 2 we compare the ROCs of GLR and Rao tests in the case
of a fixed channel SNRobs

k = 5dB, while three different cases of channel SNR
are considered, namely SNRchan

k ∈ {0, 5, 10}dB. This complementary analysis is
performed to appreciate the effect of the channel quality on the two channel-
aware fusion rules. Results highlight that channel SNR gains directly imply an
improvement of the ROC. However, such improvement is upper-limited by the
corresponding uncertainty due to the sensing channel. This effect is however not
visible due to the particular channel + sensing SNR configuration reported.

6 Conclusion and Future Directions

This work investigated the design and optimization of the Rao test (as an attrac-
tive alternative to GLRT) for distributed detection of an unknown deterministic
signal θ. The model considered accounts for one-bit quantized measurements,
zero-mean, unimodal and symmetric noise (pdf). Additionally, the (parallel-
access) reporting channels were explicitly modelled as Rayleigh fading channels
and capitalized in the design of the above fusion rules.

Furthermore, we developed an effective criterion (originating from asymptotic
theoretical performance expressions) to design sensor thresholds of Rao and GLR
tests in an optimized fashion. The sensor thresholds were chosen to be zero
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based on the asymptotic performance of both rules for some relevant pdfs of
interest in some reasonable scenarios. We then leveraged this result to optimize
the detection performance of both tests.

Finally, simulations highlighted that the Rao test achieves slightly higher
performance than the GLRT when a finite number of sensors is considered. This
result complements the asymptotic (large-WSN) case, in which the two tests
are known to be asymptotically equivalent [15]. In the future, we will tackle the
design of fusion rules (i) for detecting non-cooperative targets [25] and (ii) with
WSNs operating over multiple-access channels [26].
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